Steepest Descent Preconditioning for Nonlinear GMRES Optimization

نویسنده

  • Hans De Sterck
چکیده

Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal residual (N-GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent preconditioning variants are proposed. The first employs a line search, while the second employs a predefined small step. A simple global convergence proof is provided for the NGMRES optimization algorithm with the first steepest descent preconditioner (with line search), under mild standard conditions on the objective function and the line search processes. Steepest descent preconditioning for N-GMRES optimization is also motivated by relating it to standard nonpreconditioned GMRES for linear systems in the case of a standard quadratic optimization problem with symmetric positive definite operator. Numerical tests on a variety of model problems show that the N-GMRES optimization algorithm is able to very significantly accelerate convergence of stand-alone steepest descent optimization. Moreover, performance of steepest-descent preconditioned N-GMRES is shown to be competitive with standard nonlinear conjugate gradient and limitedmemory Broyden-Fletcher-Goldfarb-Shanno methods for the model problems considered. These results serve to theoretically and numerically establish steepest-descent preconditioned N-GMRES as a general optimization method for unconstrained nonlinear optimization, with performance that appears promising compared to established techniques. In addition, it is argued that the real potential of the NGMRES optimization framework lies in the fact that it can make use of problem-dependent nonlinear preconditioners that are more powerful than steepest descent (or, equivalently, N-GMRES can be used as a simple wrapper around any other iterative optimization process to seek acceleration of that process), and this potential is illustrated with a further application example. Copyright c © 2012 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

High-order Sobolev preconditioning

This paper compares the use of firstand second-order Sobolev gradients to solve differential equations using the method of least-squares steepest descent. The use of high-order Sobolev gradients offers a very effective preconditioning strategy for the linear part of a nonlinear differential equation. 2005 Elsevier Ltd. All rights reserved.

متن کامل

Nonlinear Preconditioning in Problems of Optimal Control for Fluid Systems

Abstract This note discusses certain aspects of computational solution of optimal control problems for fluid systems. We focus on approaches in which the steepest descent direction of the cost functional is determined using the adjoint equations. In the first part we review the classical formulation by presenting it in the context of Nonlinear Programming. In the second part we show some new re...

متن کامل

Steepest descent method for solving zero-one nonlinear programming problems

In this paper we use steepest descent method for solving zero-one nonlinear programming problem. Using penalty function we transform this problem to an unconstrained optimization problem and then by steepest descent method we obtain the original problem optimal solution. 2007 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013